

Directions:

- * Show your thought process (commonly said as "show your work") when solving each problem for full credit.
- * Remember to simplify each expression.
- * If you do not know how to solve a problem, try your best and/or explain in English what you would do.
- * Good luck!

Problem	Score	Points
1		10
2		10
3		10
4		10
5		10
		50

Conceptual understanding Execution Common pitfalls

2 each

- 1. Find the following derivatives. You are allowed to use the Differentiation Rules.
 - (a) $f(x) = \pi^2$ $\int f'(x) = \boxed{0} \quad \text{Since } \pi^2 \text{ is a number.}$

(b)
$$f(x) = x^{2} \sin x$$

$$i = \int f(x) = \frac{1}{2} \int \frac{1}{2}$$

Ξ

2. The following three equations are in implicit form. Find $\frac{dy}{dx}$.

(a)
$$3x^{2} + 3y^{4} = 4x^{3} - 2y^{3}$$

 $3 \cdot 2x + 3 \cdot 4y^{3} \cdot \frac{4y}{dx} = 4 \cdot 3x^{2} - 2 \cdot 3y^{2} \cdot \frac{dy}{dx}$

 $6x + 12y^{3} \frac{dy}{dx} = 12x^{2} - 6y^{2} \frac{dy}{dx}$

 $12y^{3} \frac{dy}{dx} + 6y^{2} \frac{dy}{dx} = 12x^{2} - 6x$

 $\frac{dy}{dx} (12y^{3} + 6y^{2}) = 12x^{2} - 6x$

 $\frac{dy}{dx} (12y^{3} + 6y^{2}) = 12x^{2} - 6x$

 $\frac{dy}{dx} = \frac{6x(2x-1)}{6y^{2}(2y+1)} = \sqrt{\frac{x(2x-1)}{y^{2}(2y+1)}}$

Product role.

(b) $x^{3} - 4x^{2}y^{3} + y^{2} = x$

 $3x^{2} - 4(y^{3} \cdot 2x + x^{2} \cdot 3y^{2} \frac{dy}{dx}) + 2y \cdot \frac{dy}{dx} = 1$

 $3x^{2} - 8xy^{3} - 12x^{2}y^{2} \frac{dy}{dx} + 2y \frac{dy}{dx} = 1$

 $\frac{dy}{dx} (2y - 12x^{2}y^{2}) = 1 - 3x^{2} + 8xy^{3}$

 $\frac{dy}{dx} = \frac{1 - 3x^{2} + 8xy^{3}}{2y(1 - 6x^{2}y)}$

both require chain rule
(c)
$$\sin(xy) = 1 - \cos(xy)$$

 $\cos(xy) \cdot \frac{d}{dx} \begin{bmatrix} x \cdot y \end{bmatrix} = 0 - (-\sin(xy)) \cdot \frac{d}{dx} \begin{bmatrix} x \cdot y \end{bmatrix}$
 $\sin(xy) \cdot \frac{d}{dx} \begin{bmatrix} x \cdot y \end{bmatrix} = 0 - (-\sin(xy)) \cdot \frac{d}{dx} \begin{bmatrix} x \cdot y \end{bmatrix}$
 $\cos(xy) \cdot \begin{pmatrix} y \cdot 1 + x \cdot \frac{dy}{dx} \end{pmatrix} = \sin(xy) \begin{pmatrix} y \cdot 1 + x \cdot \frac{dx}{dx} \end{pmatrix}$
 $g \cos(xy) \cdot \begin{pmatrix} y \cdot 1 + x \cdot \frac{dy}{dx} \end{pmatrix} = \sin(xy) + x \sin(xy) \frac{dy}{dx}$
 $g \cos(xy) + x \cos(xy) \frac{dy}{dx} = g \sin(xy) + x \sin(xy) \frac{dy}{dx}$
 $x \cos(xy) \frac{dy}{dx} - x \sin(xy) \frac{dy}{dx} = -g \cos(xy) + y \sin(xy)$
 $\frac{dy}{dx} \left(x \cos(xy) - x \sin(xy)\right) = -y \left(\cos(xy) - \sin(xy)\right)$
 $\frac{dy}{dx} = -\frac{y}{(\cos(xy) - \sin(xy))}$
 $\frac{dy}{dx} = -\frac{y}{(\cos(xy) - \sin(xy))}$

3. Short answer questions:

(a) Find the most general antiderivative of $f(x) = 3x^2 - \cos x$.

$$\left(F(x) = x^{3} - \sin(x) + C\right) \quad because$$

$$F'(x) = 3x^{2} - \cos(x) + 0 = f(x)$$

(b) Suppose f(x) is differentiable on (a, b). Must there exist a $c \in (a, b)$ where

No.
$$MVT$$
 requires
() continuous on $[a, b]$
() differentiable on (a, b)
(c) If $f'(x) = g'(x)$, what is true about the relationship between $f(x)$ and $g(x)$? (f) is not
 $\int (x) = g'(x) + C$

(d) Suppose f(x) is differentiable on (a, b). Must there exist both an absolute minimum and maximum on (a, b)? Why or why not?

4. Suppose $f(x) = \frac{1}{x^2 - 1}$.

(a) Find all intervals on which f(x) is increasing and decreasing.

(b) Find all local minimums and maximums.

$$() \quad Crit \quad \# \text{'s} = \frac{(x^2 - 1) \cdot \frac{d}{dx} [1] - 1 \cdot \frac{d}{dx} [x^2 - 1]}{(x^2 - 1)^2} \qquad \text{factor}$$

$$= \frac{(x^2 - 1) \cdot 0 - 2x}{((x - 1) (x + 1))^2} \qquad \text{factor}$$

$$= -\frac{2 x}{((x - 1) (x + 1))^2}$$

$$(a) \quad \text{solve } f'(x) = 0 \qquad (b) \quad f'(x) \quad PNE$$

$$-\frac{2 x}{(x - 1)^2 (x + 1)^2} = 0 \qquad (x + 1)^2 = 0$$

$$-\frac{2 x - 0}{(x - 1)^2 (x + 1)^2} = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1) = 1 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1) = 1 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1)^2 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1) = 1 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1) = 1 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1) = 1 = 0$$

$$(x - 1)^2 = 0 \qquad (x + 1) = 1 = 1 = 0$$

$$(x - 1)^2 = 0 \qquad (x - 1)^2 = 0$$

7

$$f'(-2) = -\frac{2 \cdot (-2)}{(-2-1)^2 (-2+1)^2} = -\frac{-1}{+} = +$$

$$f'(-\frac{1}{2}) = -\frac{2(-\frac{1}{2})}{+} = +$$

$$f'(\pm) = -\frac{2 \cdot \pm}{\pm} = -$$

 $f'(2) = -\frac{2 \cdot 2}{+} = -$

$$\therefore \int [x] \text{ is increasing on}
(-\infty, -1) \cup (-1, 0)
decreasing on (0, 1) \cup (1, \infty)
NU loca (minimums,
loca (max of $\int (0) = \frac{1}{0^2 - 1} = -1$$$

(c) Now determine all intervals of concavity.

a

.

8

 $= - \frac{-}{+} = (+)$

5. Suppose

$$f(x) = (x - 1)^2$$
 $g(x) = -x^2$

Find the minimum vertical distance between the two functions.

$$\int_{-\infty}^{\infty} \frac{1}{x^{2}} = \frac{1}{2}$$

$$\int_{-\infty}^{\infty} \frac{1}{x^{2}} = \frac{1}{2}$$